Intervehicle Communication


Vehicular network can be deployed by network operators and service providers or through integration between operators, providers, and a governmental authority. Recent advances in wireless technologies and the current and advancing trends in ad hoc network scenarios allow a number of deployment architectures for vehicular networks, in highway, rural, and city environments. Such architectures should allow communication among nearby vehicles and between vehicles and nearby ?xed roadside equipment.

Figure 1 illustrates the reference architecture. This reference architecture is proposed within the C2C-CC, distinguishing it from 3 domains: in-vehicle, ad hoc and infrastructure domain[6]. The in-vehicle domain refers to a local network inside each vehicle logically composed of two types of units:

•  an on-board unit (OBU) and

•  one or more application unit(s) (AUs).

An OBU is a device in the vehicle having communication capabilities (wireless and/or wired), while an AU is a device executing a single or a set of applications while making use of the OBU’s communication capabilities. Indeed, an AU can be an integrated part of a vehicle and be permanently connected to an OBU. It can also be a portable device such as a laptop or PDA that can dynamically attach to (and detach from) an OBU. The AU and OBU are usually connected with a wired connection, while wireless connection is also possible (using, e.g., Bluetooth, WUSB, or UWB). This distinction between AU and OBU is logical, and they can also reside in a single physical unit.

The ad hoc domain is a network composed of vehicles equipped with OBUs and road side units (RSUs) that are stationary along the road. OBUs of different vehicles form a mobile ad hoc network (MANET), where an OBU is equipped with communication devices, including at least a short-range wireless communication device dedicated for road safety.

OBUs and RSUs can be seen as nodes of an ad hoc network, respectively, mobile and static nodes. An RSU can be attached to an infrastructure network, which in turn can be connected to the Internet. RSUs can also communicate to each other directly or via multihop, and their primary role is the improvement of road safety, by executing special applications and by sending, receiving, or forwarding data in the ad hoc domain.

Two types of infrastructure domain access exist: RSU and hot spot. RSUs may allow OBUs to access the infrastructure, and consequently to be connected to the Internet. OBUs may also communicate with Internet via public, commercial, or private hot spots (Wi-Fi hot spots). In the absence of RSUs and hot spots, OBUs can utilize communication capabilities of cellular radio networks (GSM, GPRS, UMTS, WiMax, and 4G) if they are integrated in the OBU.

Incoming search terms:

  • seminar report on inter vehicle communication

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

  • Subscribe via RSS